Audit for energy efficiency

Energy audits are an essential tool in the bid to increase the efficiency of buildings. Dr Afshin Afshari, a LEED accredited professional and the assistant general manager of SS Lootah Group subsidiary International Energy Group (IEG), outlines the main methods available.

COMMENT, Projects

The question of energy conservation in buildings can be approached in two different but complementary ways. First and foremost, it is important to enforce mandatory compliance with stringent and up-to-date building energy efficiency standards such as the American Society of Heating, Refrigerating and Air Engineers' (ASHRAE) Standard 90.1 or equivalent. This compliance is at the heart of most green building initiatives such as the US Green Building Council's Leadership in Energy and Environmental Design (LEED) rating system.

But it is perhaps more important to diagnose efficiency issues in existing buildings and address them via the implementation of specific energy conservation measures. This process is generally termed an energy audit.

Energy audits aim to analyse the energy consumption in existing buildings, taking into account the building structure, the energy consuming equipment and occupants' usage profiles. Of course, a comprehensive energy audit should also consider occupant comfort parameters such as temperature, humidity and lighting.

 

The basicprinciple behind every energy audit is simple: to compare the actual and ideal energy usage, diagnose problem areas and make a financial assessment of different solutions. The source of the actual usage values can be, for instance, utility bills or by a specific measurement campaign that is set up for a certain period of typically a few weeks in order to obtain a representative consumption pattern.

Furthermore, often a theoretical model of the building is used as a tool to assess energy conservation measures. The most widespread type of audit, (standard audit), relies on theoretical values derived from simplified energy balances. The more sophisticated ‘comprehensive audit' opts for a dynamic simulation model of the building, its equipment, usage profiles and the external climate. A number of commercial building thermal modelling software tools can be used for this purpose.

Building interactions

Energy consumption patterns are the outcome of complex interactions between the building structure, equipment, occupants and external environment. Of these four systems the building structure is probably the most challenging to properly analyse and characterise in the course of an energy audit. For instance, a comprehensive audit requires no less than the quantitative characterisation of the dimensional and thermo-physical properties of every wall, partition, roof, window and door. Understandably some of this data is hard to obtain, especially for older buildings, and will have to be estimated or approximated.

As for the equipment analysis it should, at the very least, enable the auditor to estimate average annual energy usage of major system components: space cooling/heating production and distribution, hot/cold water production and distribution, mechanical ventilation, lighting and elevators. Ideally, the equipment analysis will be sustained by measurements, enabling a thorough assessment of the equipment's set-points and performance levels.

Building usage patterns are most reliably determined via utility meter interval data (if available) or utility bills, while complementary information can be inferred from occupant/operator interviews or building management system (BMS) logs. Such complementary information will inform on details such as occupancy schedules and equipment setpoints.

Depending on client requirements or data availability, several levels of audit are possible. The main ones are:

• benchmarking audit;

• Standard (diagnostic) audit;

• Comprehensive (instrumented) audit.

Careful calibration

The power of a calibrated simulation model resides in the fact that, since all model parameters correspond to thermo-physical properties of the building or its equipment, once their ‘true' value has been pinpointed via calibration, these values will not change over time, so the procedure need not be renewed. Hence, a properly calibrated simulation model is a powerful predictive tool that can be used over the lifetime of the building to evaluate and prioritise energy conservation measures. Not to mention other more advanced applications such as HVAC operational optimisation, energy budget prediction and allocation and virtual sub-metering.

After the completion of the calibration procedure, the assessment of conservation measures can begin. For each hypothetical measure an ‘alternate' model is built that incorporates the suggested change/enhancement. The alternate model is then compared to the original (‘baseline') model. Both models are run against climate/usage data for reference/typical year (typical climate data for many locations worldwide are readily available).

The outcome of this exercise is usually a surprisingly accurate estimate of the expected energy savings. At this point, one applies the same method as with the standard audit: estimate the financial impact of the conservation measure (upfront cost, future savings) and derive payback period, then establish a priority list where the measures are ordered according to decreasing payback periods.

If you would like to write for Construction Week in this column, please email angela.giuffrida@itp.com

Most popular

Awards

CW Oman Awards 2020: Meet the winners
A round of the thirteen winning names at the Construction Week Oman Awards 2020 that

Conferences

Leaders UAE 2020: Building a sustainable, 'resilient' infra
AESG’s Phillipa Grant, Burohappold’s Farah Naz, and Samana's Imran Farooq on a sustainable built environment
CW In Focus | Inside the Leaders in KSA Awards 2019 in Riyadh
Meet the winners in all 10 categories and learn more about Vision 2030 in this

Latest Issue

Construction Week - Issue 767
Sep 01, 2020